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ABSTRACT

The optimization of spacecraft trajectories in vacuum has

received extensive consideration since the inception of space

flight, yet, the effects of atmosphere have been largely

neglected. The advent of low Earth-orbiting, large satellites

and platforms necessitates that atmosphere be included in the

optimization process. A practical means of studying this topic

is as a problem in minimum-fuel orbital maintenance. Optimal

control theory advances the notion that orbital maintenance is

optimized through periodic thrusting as opposed to forcing

Keplarian motion by nullifying the effects of drag with

thrust. Further, this must be optimized by primer vectoring.

This thesis examined the efficiency of a simple method of

orbital maintenance using fixed-angle transverse thrusting.

Results show that for the purpose of fuel-minimization, the

width of the radial band in which the satellite is to be

maintained, is dependent upon thruster size. In nearly all

cases, a thrust-angle of 70 degrees maximized the fuel saved.

This thesis shows that fixed-angle transverse thrusting does

not improve on forced Keplarian motion and hence thrust

vectoring must be optimized.
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NOMENCLATURE

a. radial acceleration

ar transverse acceleration
a semi-major axis of an ellipse
C negative reciprocal of thruster exhaust velocity
CD coefficient of drag
D magnitude of drag
D, radial component of drag
D-r transverse component of drag

E total energy
F, external forces in radial direction
Fr external forces in transverse direction
go gravitational acceleration at sea level
H Pontryagin's H-function

ISD specific impulse
I unit vector in direction of thrust
m spacecraft mass
r position vector

r radius
rrax maximum radius

r, n  minimum radius
Ro  initial radius
Rf final radius
S path travelled by spacecraft
S1 initial position of spacecraft
S2 final position of spacecraft

Sref aerodynamic reference surface of vehicle

Tthrust vector

Trax magnitude of thrust
Tr radial component of thrust
Ttr transverse component of thrust

t time
to initial time
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t. final time
v velocity

v velocity vector
v, radial component of velocity
V., transverse component of velocity

C thrust angle

1exponential density scale factor
AE change in total energy
AR radius at which periodic thrusting is commenced
At change in time

specific energy
orbital coordinate used to define spacecraft position

X Lagrange multiplier

mass costate

velocity costate vector

X. radius costate vector
1gravitational constant

p atmospheric density
p. atmospheric reference density
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I. INTRODUCTION

In 1963, D.F. Lawden, in his monograph [Ref. 11,

laid the foundation for what has become a highly sophisticated

subdiscipline of astrodynamics, optimization of space

trajectories. In 1979, Marec [Ref. 2] provided a more

comprehensive treatment of the subject in his text on optimal

space trajectories. Examination of the optimization of

spacecraft trajectories has been treated by many authors in

manners similar to these two great works, yet, until recently,

the study of atmospheric effects upon these trajectories was

largely neglected. Research and development of hypervelocity

vehicles have kindled interest in this area, through which

study, other areas of interest have emerged.

One such area is the effect of aerodynamic force on non-

lifting, or, blunt bodies. First addressed by Ross and Melton

[Ref. 31, this subject is of particular interest for

two reasons. First, atmospheric effects on low-Earth orbiting

(LEO) satellites are of obvious interest and second, as stated

in their paper [Ref. 3:p. 2], better understanding of this

phenomenon could provide deeper insight into the more

complicated topic of lifting bodies in the upper atmosphere.

Much work has been accomplished in this area pertaining to

accurate prediction of satellite orbits [Ref. 4, 5].

The focus on atmospheric effects as they pertain to the
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specific proble, of minimum-fuel orbital transfers, however,

is unique to [Ref. 3] and the follow-on work described here.

The particular problem of orbital maintenance can provide

insight into the more general, and complex problem of orbital

transfer.

Historically, orbital transfers (coplanar) have been

accomplished as either, two, or, three-impulse maneuvers

[Ref. 6:pp 78-88]. The problem of orbital transfer is

approached as a minimization of energy required to move a

satellite from orbit A to orbit B, or, equivalently, a

minimization of the characteristic velocity. A satellite that

has descended from an initial orbit due to a disturbing force

such as drag, and which must be returned to its initial orbit

can be approached as a problem requiring an orbital transfer.

Orbital transfers such as this are optimally performed by two-

impulse transfers, such as a Hohman transfer. Large orbital

transfers (r,>ll.8r,) are optimized with three-impulse

maneuvers [Ref. 6:p 871. As low-Earth orbits become more

frequently utilized, deeper understanding of the effects of

drag must be achieved in order that orbits, propulsion systems

and costs are optimized. This is particularly applicable for

large satellites, such as the proposed space station, that

must remain in low orbits for extended periods of time.

Additionally, more complex areas of study, such as that of

lifting bodies in the upper atmosphere, could benefit from the

2



insights gained through a deeper understanding of atmospheric

effects on non-lifting bodies.

Research on the atmospheric effects on low-Earth orbiting

spacecraft is sure to receive much attention in the future.

The benefits to existing and future systems, while extensive,

remain relatively unexplored and demand the attention of the

aerospace industry.

3



II. GENERAL FORMULATION OF THE PROBLEM

Optimization of orbital transfers is a subject that has

achieved a high degree of sophistication and many elegant

solutions exist [Ref. 1, 2]. However, the specific treatment

of non-lifting bodies is in the initial stages of development.

The increasing number of low Earth orbiting satellites

requires that a study of atmospheric effects on orbital

trajectories be conducted. In this thesis, the problem of

minimum fuel orbital maintenance is considered. Two methods

are examined by which orbital maintenance may be performed.

One method is to counter drag with thrust. In this forced

Keplarian motion, the reaction control system would thrust

continuously for the duration of the satellite's lifetime with

magnitude and direction equal and opposite to drag. The second

scheme considered here, utilizes periodic transverse

thrusting, or, non-Keplarian motion to correct for

perturbations due to drag. The question to be answered is

whether or not optimal non-Keplarian trajectories are superior

to forced-Keplarian trajectories.

Let the problem be defined as maintaining an orbital

deviation within a specified radial band rmirKrr. Is forced-

Keplarian orbital maintenance, i.e., exactly countering

aerodynamic forces with thrust, superior to non-Keplarian

orbital maintenance, i.e., allowing the orbit to decay to a

4



certain point, then reboosting to a point above the desired

altitude. While maintaining the spacecraft within the

specified radial band? The study performed by Ross and Melton

[Ref. 3:p. 4] suggests that forced-Keplarian motion is not

optimal and that thrust vectoring must be considered if an

optimal solution is to be obtained.

This thesis addresses an additional question, can orbital

maintenance be optimized if thrusters are fired at a fixed

angle to the local horizon and if so, what is the angle or,

preferably, range of angles that achieve optimality?

Ross and Melton [Ref. 3] develop their theory through the

methods of optimal control theory. It is proposed here that,

while ideally accomplished in that manner, satisfactory and

enlightening results may be obtained through the use of

relatively unsophisticated mathematics and the aid of computer

modelling techniques. To exemplify this statement, let us

examine the mathematical development in Ross [Ref. 3: pp.

1-3]. Drag is given by

-D 1 ,Cv (1)
2

where p(r) is atmospheric density, Sref is the reference

surface area of the spacecraft upon which the aerodynamic

forces act, C, is spacecraft's coefficient of drag and v is

its velocity. The equations of motion can be written as

S= -Y (2)
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J ~SefCDY P V T. 1  (3)
r3 2 m m

Ah (ca, C -27) (4)

Applying the principles of Pontryagin, the Hamiltonian is

given by

H y SfD)__ ;.,A_ T-' + X.mCTma (5)

The costates are then written as

H -- Sze g+ ) 6

= au - SefCDp SrefC P(Y (7)

- 2) P VArfY ) + TmX1i (8

A closed form solution to these equations does not exist and

only after initial and boundary conditions have been

determined may the solution be obtained through numerical

integration. This is a cumbersome method for determining the

optimal direction of thruster firing. In this thesis, we look

into the possibility of a constant vectoring scheme that may

result in nearly identical performance.
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A computer generated model will strive to maintain

spacecraft trajectory within ±1.5 kilometers of the injection

altitude utilizing a periodic fixed angle transverse thrusting

control scheme whose direction is maintained at a fixed angle

relative to the local horizon. The propellant consumed will

then be compared to that of the same satellite employing a

control law that sets thrust equal to drag at every point

within the orbit.
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III. SIMPLIFIED PARAMETRIC FORMULATION

A method less elegant than optimal control theory, but

nonetheless valid, is that of parametric variation. The

equations of motion are developed for the satellite's orbital

trajectory and certain parameters varied to achieve "optimal"

control of orbital variations.

A. DEVELOPMENT OF THE EQUATIONS OF MOTION

For the purpose of building a solid foundation, certain

simplifying assumptions are made. Orbital motion is assumed to

be coplanar, the initial spacecraft orbit is assumed to be

circular and since the spacecraft is a non-lifting (blunt)

body, drag is the net aerodynamic force acting upon it.

The equations of motion for this two-body system can be

written as

a z  (9)

Ft= (10)

where ar is the radial acceleration of the spacecraft, air is

its transverse acceleration, Fr is the sum of the external

forces in the radial direction, Fir is the sum of the external

forces in the transverse direction and m is spacecraft mass.

8



The external forces acting on the spacecraft are the

gravitational field, aerodynamic forces and thrust. Figure 1

illustrates the coordinate system and the net forces.

Transverse axis

Y Radial axis

Satellite orit

Figure 1 Graphical Representation of Coordinate System

Referring to Figure 1, it is clearly seen that the components

for drag are given by

D1  -D sin(y) (11)

Dcr = -D cos(y) (12)



Likewise, thrust is written as

T, =T.. cos (a) (13)

Ttr =T._, sin (a) (14)

The angle y is the flight path angle, defined by the

intersection of the velocity vector and the transverse axis.

The angle a is called the thrust angle, defined by the

intersection of the thrust vector and the transverse axis. The

equations of motion, then, become

2D Tr (15)
r2 m m

6r +28±- Dtr T (16Or- 2t + T. (16)
m m

where g is the Earth's gravitational constant.

B. DETERMINATION OF THE CONTROL VARIABLE

Following the development of the previous chapter, it is

desirable to maintain the spacecraft within a radial band of

a predetermined width. This may be accomplished by directly

controlling either radius or eccentricity. Radius is the

control variable of choice for a number of reasons: it is

found directly from integration of the equations of motion,

changes are easily visualized and radius control provides

indirect control of the eccentricity. It is clear that by

varying the thrust, control of satellite radius is possible.

Examination of the thrust equations (Equations 13 and 14),

10



presents two methods by which thrust may vary, changes of

amplitude or change in the direction of the thrust vector.

The following chapter presents a method by which radial

deviation is controlled through variation of the thrust angle

and then tested by varying the thrust magnitude. A computer

model is developed that simulates the trajectory of a

spacecraft, graphically demonstrating the effects imposed on

it through variation of the direction of the thrust.

11



IV. DEVELOPMENT AND TESTING OF THE COMPUTER MODEL

A. COMPUTER PROGRAM DEVELOPMENT

As indicated in the previous chapter, a computer program

is developed to simulate spacecraft orbital trajectories and

is included in Appendix A. The program is written in the

fortran language and employs a fourth-order Runge-Kutta

numerical integration routine to integrate the equations of

motion. The program consists of six sections, the main program

and five subroutines. The main program controls input and

output while the subroutines provide various other functions

necessary for accurate simulation of orbital trajectories.

The first subroutine calculates drag experienced by the

spacecraft. Initially, a model incorporating constant

atmospheric density is used. This facilitates verification of

the program, after which, an exponential density model is

used. It is acknowledged that more accurate atmospheric

density models exist, however, the exponential model provides

satisfactory accuracy over the range of travel experienced by

the satellite (± 1.5 kilometers from initial orbit R0) as

controlled by the simulation. The second subroutine contains

the equations of motion governing the spacecraft's orbital

trajectory. To facilitate handling, the equations were broken

into parts. Solving Equations (15) and (16) for acceleration,

12



it is seen that the right-hand side of the radial equation has

four components and the angular equation has three. These

components are labeled A, B, C, and E for the radial equation

and P, Q and S for the equation governing angular motion. The

third subroutine contains the fourth-order Runge-Kutta

numerical integration routine used to integrate the equations

of motion. The next subroutine calculates the parameters of

the satellite's osculating orbit. The last subroutine contains

the control law governing the activation and deactivation of

the thrusters responsible for the periodic maintenance of the

satellite's orbit.

The following parameters define the specifications around

which the computer model was developed.

* Spacecraft mass = 20,000 kg.

* Spacecraft frontal area (Sre5) = 60 m2 .

" Coefficient of drag (C,) = 2.2.

* Altitude of spacecraft's orbit (Rc) = 260 km.

" Atmospheric density at R0 (p) = 8.3130 x i0 - 11 kg/m3 .

B. PROGRAM VALIDATION

Program development proceeded in stages, with each stage

requiring validation prior to beginning the next. Initially,

all external forces except gravitation were neglected.

Clearly, radius, speed, angular momentum and specific energy

must remain constant for the program to be considered valid.

13



Having accomplished that elementary stage, phase two

introduced drag (Equation (1)). Taking into account the fact

that aerodynamic forces acting on a spacecraft are very small,

and consequently, the time required for significant changes to

occur, very large, atmospheric density was increased by

approximately three orders of magnitude in order to reduce

computer run time.

Initially verifying that radius continually decreased, the

accuracy was tested by comparing the difference in altitude

per orbit calculated by the program to that calculated

manually by simplified equations. This is accomplished through

the use of a "rule-of-thumb" and is developed in the following

section.

1. Development of a Rule of Thumb

Work done by drag is a function of the path travelled

by the spacecraft. Therefore, the amount of work done

corresponds to the change in energy of the spacecraft, which

is given by

Work done = AE = Drag x 2ur (17)

Spacecraft specific energy is given by

vY I2 
- = (18)

2 r 2a

Total energy E is equal to the specific energy multiplied by

spacecraft mass. Assuming that the spacecraft is in a circular

orbit, the semi-major axis a is equal to the radius r.

14



Performing this substitution then differentiating both sides

of the equation while holding mass constant yields

dE = I" dr (19)

2r
2

Setting Equations (17) and (19) equal to each other and

solving for the change in radius yields

Ar = 47cr 3D (20)

Equation (20) is the decrease in radius per orbit of the

spacecraft due to drag. Despite inaccuracies resulting from

the simplifying assumptions, this rule of thumb is accurate to

within a few percent. The difference in spacecraft radius

calculated by the computer program matched that of the thumb

rule within a few percent thereby validating the model through

this point in its development. Phase three introduced thrust

while setting drag equal to zero. Clearly, any results other

than steadily increasing radius, angular momentum, and

specific energy would have been cause for program

invalidation.

2. Development of a Control Law

The purpose of the control law is to maintain

satellite radius within a prespecified bandwidth. By

monitoring certain variables, activation and deactivation of

station keeping thrusters can be determined. Keeping the

control law simple in order that computer memory and run time

15



related to station keeping be kept to a minimum is also a

desirable goal. With these facts, control law design proceeded

as described in the next section.

3. Control Law design

a. Approximate method

Specific energy is a function of spacecraft radius.

For that reason, specific energy is a very useful parameter

that can be used to maintain the satellite within the

specified bandwidth. The energy lost when the satellite's

radius decreases, is dependent upon the path taken by the

satellite in its descent as illustrated in Figure 2 below

(exaggerated for clarity).

si
Ur

Figure 2 Path Travelled By A Spacecraft Between Two Orbits

If S represents the path travelled by the spacecraft, then S,

is its initial position and S2 its final position. The force

acting against spacecraft motion is drag, which directly

16



opposes the velocity vector. With this in mind, the energy

loss is given by

S2

AE P ds (21)
S,

The arc length S is a function of radius and angle turned

through, and is given by

S = re (22)

Differentiating the above equation yields

dS= rB + Odr (23)

Substituting Equation (23) into Equation (21) yields energy

loss in terms of the known variables, r and 0

AE = ftOdr + fDraf (24)
RC 0

Employing Simpson's rule, the loss in energy can be

approximated fairly closely. Assuming atmospheric density,

flight path angle, thrust angle and thrust are all constant,

Simpson's rule applied over ten iterations yields the energy

lost in moving from R, to R,

Rf- R DO (3O) + - Dr(29) (25)

( 30 )30

Referring to Figure 2, Rf is the point at which the thrusters

will fire. In terms of the control law, R, is the control

variable and can be relabelled as AR since it is variable and

17



determines the width of band in which the satellite is

maintained. As developed for this model, AR is the initial

radius R, minus one kilometer. This value is chosen so as to

maintain maximum orbital deviation within ± 1.5 kilometers of

R.. Now that the energy loss has been approximated, the

objective is to determine the length of time to fire the

thrusters in order to replace the energy. The return path of

the spacecraft is a function of the thrust.

AE = f(T - .5) d§ (26)

Recognizing that ds is related to the time rate of change of

the position vector or arc length S, Equation (26) becomes

AE = f(T - A),V dT (27)

Reducing Equation (27) to component form yields

t'r tf

AE = f (T 1 D1 )vdt + f (T r - Dmr)vtrdt (28)

to to

Integrating and solving for At yields the length of time that

the thrusters must fire in order to replace the energy lost

due to drag.

At= AE (29)
(Tr - D,) v. + (Ttr - D,,) v,.

Examination of Figure 1 reveals that velocity can be written

as

18



v= vsin(y) (30)

and

V~r = vcos (Y) (31)

Figures 1 through 6 of Appendix B illustrate

results obtained from this method for thrust angles of 600 and

650. Examination of plots of thrust versus orbit (Figures 2

and 5) reveal the inadequacy of this model. Thruster firing

times are seen to be on the order of orbits rather than

fractions of orbits. This is due to two factors, first and

most important being that the energy change is calculated from

the initial orbit to the point AR where the thrusters begin

firing. The problem arises from the fact that the satellite is

still in a descent at this point and continues to descend

until its motion is reversed through the opposing force of the

thrusters. As a result, the satellite loses more energy than

is replaced. The second problem arises from the inaccuracies

inherent in the assumptions required to perform the

approximation. While the first problem is easily resolved, the

changes in atmospheric density and flight path angle, while

very small, are not constant and the resulting errors combine

to render this model unsatisfactory. A more accurate method is

to calculate the energy loss directly using the variables

derived from integrating the equations of motion.

19



b. Direct method

Using Equation (18), the initial and instantaneous

energies may be calculated at any instant during the

trajectory of the spacecraft. As before, thrusters will fire

when the spacecraft descends below AR. The program then

calculates the spacecraft's specific energy each time the

equations of motion are integrated. Comparing this value to

that of the initial circular orbit, the control law commands

the thrusters to fire until they are equal. Examination of

Figures 1 through 6 of Appendix C reveals that while results

are closer to those expected, this method also appears to be

inadequate. Thruster firing times (Figures 2 and 5) remain

excessively long. Reevaluation of the model suggested that the

solution might be a function of the thrust to drag ratio.

Increasing thrust to a value of 300 N and then examining

results for thrust angles of 600, 650 and 700 revealed this to

be the solution. Results are found in Appendix D. Thrust

angles of 650 and 700 maintain radial deviation within the

prescribed bandwidth of three kilometers with a trend that

indicates they will remain so indefinitely. Thrust plots

(Figures 2, 5 and 8) illustrate that the thrusters are firing

over a small portion of an orbit instead over a period of many

orbits as before. Plots of spacecraft radius versus orbit are

included in each appendix to illustrate the success of the

control law in maintaining radial deviation within the three

kilometer band. Energy plots are also included as

20



corroberating illustrations of the spacecraft's energy level

at each point in its trajectory.

21



V. ANALYSIS AND RESULTS

Analysis of the validated model is performed in four

steps. Prior to testing, drag was returned to its true value

of 8.3130 x I0-:: kg/m3 and thrust was set equal to a value of

25 N. This value is determined by multiplying the thrust to

drag value of the test model by the drag actually experienced

by the satellite. The thrust to drag ratio with the increased

density is

30-N = 75.834 (32)

3.956N

With p = 8.313 x 10-:: kg/m, drag is calculated to be 0.329 N.

Multiplying this to the value in Equation (32) yields a thrust

of 25 N.

A. USE OF A CONSTANT DENSITY MODEL

Initial testing maintained a constant density while

varying thrust angle. The results obtained from these tests

are interesting. As illustrated in Appendix E, approximately

six and a half orbits are required for the spacecraft's radius

to decay to AR. Thruster firing places the spacecraft into a

slightly elliptical orbit (typically, eccentricities were

found to be on the order of 10-4). Examination of energy plots

reveal that the energy of the elliptical orbit is very close

to that of the initial circular orbit. This results in one
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large energy change as the spacecraft initially descends from

R- and is returned, then, subsequent small changes are

required once the spacecraft is established in its

"elliptical" orbit. A thrust angle of 70 ° is seen to yield the

best results (see Figure 6 of Appendix E) . Radial deviation

remains just within the specified radial band with a trend

that indicates it will do so indefinitely. At angles of less

than 70 ° , radial deviation steadily increases until it exceeds

the prescribed limits. An illustration is provided in Appendix

E, for a thrust angle of 650. Thrust angles greater than 700

follow a trend illustrated by Figure 7 of Appendix E (a=75 0 )

until reaching approximately 850. Above 850, increasingly

larger values of thrust are required to maintain the

spacecraft within the prespecified radial band.

B. USE OF AN EXPONENTIAL ATMOSPHERIC MODEL

Use of a constant atmospheric density model permitted the

determination of an optimum angle that could be compared with

that determined by a more accurate exponential atmospheric

density model. Also, realizing that density changes would be

small within a three kilometer band, the constant density

model divulged a reasonable facsimile of results obtained from

the exponential model. As stated previously, more accurate

density models exist, for example, the Jacchia Atmospheric

Model (J70). The exponential model, however, provides
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sufficient accuracy for the development and testing done in

this thesis. With this in mind, density is now given by

p = poe-P(r-o) (33)

where 0 is determined to be -2.12 x 10-' m-* [Ref. 71.

As predicted, the results are nearly identical to those

obtained from the constant density model. A thrust angle of

701 maintains the spacecraft within the three kilometer band

with the same trends as described in the previous section.

Results are illustrated in Appendix F.

1. Comparison with a Forced-Keplarian Model

It is now possible to compare results obtained from

this model with that of a spacecraft experiencing forced-

Keplarian motion (thrust equal to drag, resulting in a

circular motion). Modifications to the program to obtain a

model in which thrust is equal to drag are very simple. The

drag subroutine calculates drag then sets thrust equal to it.

The subroutine containing the thrust control law is removed

from the program entirely since thrusters will fire

continuously as long as propellant is available. Drag always

opposes the velocity vector which, as previously shown, is

defined by the flight path angle y. If the thrust is exactly

opposite and equal to the drag force, then the thrust angle a

is equal to the flight path angle. Therefore, modifications

consisted of setting a = y, removing the subroutine containing
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the thrust control law and setting thrust equal to the drag

calculated in the appropriate subroutine. Since the spacecraft

is initially in a circular orbit, validation of these

modifications is achieved when the spacecraft's orbital

parameters remain unchanged over the test period; in this

case, 20 orbits.

Finding that the model performed as expected, plots of

propellent consumed over the test period are compared with

those for the spacecraft experiencing non-Keplarian motion at

a thrust angle of 70c . Results are contained in Appendix G. It

is clearly seen that orbital maintenance using forced-

Keplarian motion is superior to that using non-Keplarian

motion.

2. Further Testing

To determine the "robustness" of the model, two

additional tests were performed. In the first, thrust was

maintained at 25N while specific impulse was varied over the

range of 200 sec, valid for chemical reaction engines, to 2000

sec which is valid for electrothermal engines. In the second

test, specific impulse is returned to its initial value of 300

sec while thrust is varied over a range extending from IN to

35N.

a. Constant Thrust, Varied Specific Impulse

Varying specific impulse while holding thrust

constant, forces the rate of fuel consumption to change.
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Specific impulse is given by given by

Iq=T
TP (34)rug0

where Ip is the specific impulse, T is the magnitude of the

thrust, g, is the gravitational acceleration at sea-level and

m is the change in mass.

Clearly, decreasing thrust results in a corresponding

decrease in the rate of propellant consumed over a given

period of time. This is graphically represented in Appendix G.

The absolute quantity of fuel consumed decreases with

increasing specific impulse, but the percent difference

between the reboost and forced Keplarian methods remain

virtually unchanged.*

The percent difference is calculated by taking the ratio

of the values of propellant mass at a specific time for

thrust-equal-drag plots and reboost plots to determine the

relative change between them. This provides a truer comparison

of the two schemes than does simply comparing the end values

of the plots.

The results illustrated in Appendix G indicate that, while

playing a significant role in propulsion system optimization,

specific impulse is not a function of the method used to

perform orbital maintenance and will not affect the particular

outcome of one method more than another.
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b. Constant Specific Impulse, Varied Thrust

The previous section illustrated the significance

played by specific impulse in minimizing fuel expenditure

during orbital maneuvers. Obviously, engine "size" plays an

equally important role in that process. It is expected that as

thruster size increases, fuel expenditure will increase.

Appendix H bears this out. While it is theoretically a simple

matter to choose the proper specific impulse (bigger is

better), this is not the case when choosing thruster size.

Examination of the plots in Appendix H reveal that when

comparing engines over a certain time span, the end results do

not provide a ready solution. Figure 1 is a case in point.

Although this case (lN thruster, I.P=300 sec) results in the

least amount of fuel expended over the range of thrusts

chosen, it is obvious that this is not a wise choice of

thruster size. The thruster fires continuously from its

initiation until the end of the test period. The thruster is

clearly too small. A five newton thruster, i.e., Figure 2,

seems to be a viable engine size, although, without more

information, it is difficult to determine positively.

Relatively large thrusters burn for shorter periods

of time than smaller thrusters to achieve a common result, but

each burn expends more fuel. Smaller thrusters, on the other

hand, expend less fuel for a given burn time, yet must burn

longer to achieve the same results. The fundamental result of

this test is that thruster size is a tradeoff variable that is
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to be used in conjunction with other factors to achieve

desired results, such as minimization of thruster burn time

during orbital maintenance.

3. Final Tests

Previous sections have shown that within a narrow

radial bandwidth, a model using thrust equal to drag is

superior to one using fixed thrust-angle reboost techniques.

The question arises as to whether these results will remain

valid for larger bandwidths.

As described earlier, the control law commands the

thrusters to fire when the spacecraft orbit has decayed a

certain distance below the reference orbit. Results are

examined for cases where the spacecraft is allowed to descend

20 km, 30 km and 40 km below RO. Thrust is fixed at 300 N

while specific impulses vary between 300 sec, 500 sec and 2000

sec. As for the case of a 3 km bandwidth, a thrust angle of

701 maintained the spacecraft within the desired bandwidth and

was therefore used for all cases described below. The tests

are performed over a period of 100 orbits. In order to reduce

computer time, atmospheric density was once again increased to

a value of 1 x 10-1 kg/M3.

a. Case 1: Thrusters Fire 20 km Below ao

Rather than choosing a specific bandwidth and

adjusting the control law to achieve it, the spacecraft's

orbit was allowed to decay a certain distance prior to
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activation of the control thrusters and the resulting

bandwidth measured. This provided expediency since the control

law determined the bandwidth rather than having to be adjusted

to achieve it. The results are the same in either case so no

accuracy is lost with this method. The figures in Appendix I

illustrate the results of this case.

Allowing the spacecraft's orbit to decay 20 km

prior to activation of the control jets provided a radial band

of 55 km. Plots of expended propellant mass versus orbit are

provided for the three test cases (I., = 300 sec, 500 sec and

2000 sec) . As in previous cases, thrust equal to drag provides

a straight line while reboost is actually a series of steps.

Each step is a cycle wherein the spacecraft descends 20 km at

which time reboost occurs (vertical portion of plot), after

deactivation of the thrusters, the spacecraft once again

descends to the point where reboost reoccurs. This is

indicated by the horizontal portion of the plot since no fuel

is being expended during this portion of the trajectory. As

before, the reboost maneuver puts the spacecraft into a

slightly eccentric orbit (on the order of 10-4). This accounts

for the periodic motion and high number of thruster firings

indicated by the mass plots in Figures 2 through 4. As

expected, increasing specific impulse reduces the amount of

propellant expended over the test cycle.
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b. Case 2: Thrusters Fire 30 kM Below Ro

Requiring the control law to fire 30 km below the

reference orbit provides a radial band of 78 km. Figure 5 is

an illustration of spacecraft radius over time. Because AR is

so large, the reboost maneuver must occur twice before the

spacecraft settles into a periodic trajectory that carries it

the full width of the radial band. Eccentricity of the

osculating orbit, however, remains on the order of 10-'. Once

in its periodic trajectory, results are very similar to those

of case 1. Figures 6 through 8 illustrate propellant mass

consumption over the test period. The first two thruster

firings are clearly evident. Once in its periodic trajectory,

the mass plots are very similar to thoz of case 1 and occur

for the same reasons.

Comparisons of the mass plots of case 2 to case 1

reveal interesting results. Percent difference comparisons of

case 2 to case 1, for identical specific impulses, provides an

indication of established trends from which inferences of

future results might be made.

We see that for case 1, for each variation of

specific impulse, reboosting the spacecraft requires 482

percent more fuel than the use of thrust equal to drag

techniques. Case 2 reboost maneuvers require 578 percent more

fuel than thrust-cancel-drag maneuvers.
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c. Case 3: Thrusters Fire 40 km Below RO

Allowing the spacecraft's orbit to decay 40 km

prior to initiating reboost sequences provides a radial band

of 100 km in which the satellite trajectory is maintained.

Figure 9 illustrates radial deviation of the spacecraft. The

increase in AR coupled with a fixed thrust requires the

satellite to perform three reboost maneuvers before the

familiar periodic trajectory is achieved. Thruster firing is

clearly evident in the first two incidences, as is the ensuing

orbital decay of the resulting (slightly) eccentric

trajectories.

Calculating the mass expenditure percentages

reveals that reboosting the satellite requires 481 percent

more fuel than does setting thrust equal to drag. Although

thrust equal to drag is still superior, the difference between

the two is decreasing. To further test this result,

percentages were calculated for points 43 orbits and 97 orbits

into the test period. All values were less than corresponding

values calculated in case 2. While these results do not

provide conclusive evidence, we may conjecture that a trend is

developing, indicating that at some point results from

periodic orbital maintenance will equal those from forced

Keplarian motion, or as the theory predicts, the plots will

reverse and periodic thrusting will become superior.
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C. SUMMARY OF RESULTS

Initial testing, utilizing a constant atmospheric density

model provided a baseline against which, further testing could

be compared. A thrust angle of 700 was found to produce the

desired results. Fixing the thrust vector at this angle

maintained spacecraft orbital deviation within a three

kilometer band nearly indefinitely. Upon determining this

angle, the computer program discarded the constant density

model and incorporated an exponential atmospheric density

model.

This simulation was then compared to a model in which

thrust canceled drag. According to the optimal control theory

developed in Chapter III, the simulation (reboost model)

should prove superior to a thrust-cancel-drag model (relative

to the problem of fuel-minimization) . In fact, reboost

required significantly more propellant to maintain the

satellite orbit within the three kilometer band than did

thrust equal to drag. To test the robustness of these result,

specific impulse was varied between 200 and 2000 sec and

thrust was varied between 1 and 35 N. The results remained

unchanged. To further test the results, the simulation was

tested over much wider radial bands. The results still proved

thrust-cancel-drag trajectories superior to reboost models

although the difference in efficiency seemed to decrease.
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VI. CONCLUSIONS AND RECOMMENDATIONS

As stated previously, optimal control theory states that

orbital maintenance using a technique in which thrust cancels

drag, is not optimal. This means that some scheme using

periodic thrusting must then be optimal. Through the

complicated techniques of optimal control theory, a thrust

vectoring scheme is shown to indeed be the optimum. If the

thrust vector always points along the primer vector, the

trajectory is optimal. A sub-optimal scheme using fixed-angle

thrusting and parametric variation is presented here as a

simplified method of determining the optimality of orbital

maintenance.

In each series of tests, minimization of propellent mass

using fixed-angle thrusting has proven to be inferior to that

in which thrust is set equal to drag. At first glance these

results appear to contradict the theory developed by Ross and

Melton [Ref. 3]. For small perturbations forced-Keplarian

motion proved to be superior to periodic fixed-angle

thrusting. As the perturbations increased (indicated by the

increasing size of the radial band), it would seem reasonable

to expect that the difference in fuel consumption between

these two techniques would increase. However, the results of

tests described in section A.4 of Chapter V reveal that for

large radial bands, the percent difference in propellant mass
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expended between methods of orbital maintenance using periodic

thrusting and forced Keplarian motion, actually appears to

decrease. Based on these results, we may conjecture that the

percent difference between the two methods tested here will

continue to decrease until periodic thrusting yields results

superior to those for forced Keplarian motion. Further testing

is required before the analytical theory proposed in [Ref. 3]

may be conclusively verified.

The problem as presented here is that of fuel-minimization

during orbital maintenance. Solving the Mayer optimality

problem derived in Ross [Ref. 3] yields the primer vector.

This is a very cumbersome method requiring solution of a two-

point boundary value problem. If periodic thrusting is done

along the primer vector, fuel will be optimized. This thesis

has proposed a simpler method using the energy balance of the

satellite to achieve similar results. Results, however,

indicate that for small perturbations, forced-Keplarian motion

will provide the best results.

Ultimately, the goal of this thesis is to provide a method

of fuel-minimization that is practical and may be applied to

existing systems. Propulsion systems utilizing vectored thrust

are highly complex and have a correspondingly higher chance of

failure. Additionally, the extreme size of the perturbations

required before periodic orbital maintenance would become more

economical than forced-Keplarian motion is impractical.
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Based on these conclusions, and with the added knowledge

that a variable-thrust propulsion system capable of operating

continuously over the lifetime of a satellite may also be

impractical, it is recommended that further testing of

periodic fixed-angle transverse thrusting schemes for small

perturbations be accomplished. It is recommended that the

Mayer optimality problem described in Ross [Ref. 3] be solved

and the primer vector found. The results should then be

compared to those described in this thesis to determine the

actual amount of savings acquired through optimization. It is

possible that the amount of fuel saved may not warrant the

cost of building a propulsion system capable of periodic

primer thrusting. Additionally, a comparison of orbital

maintenance techniques presently in use, with results found in

this thesis, should be accomplished to determine their

relative efficiency.
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APPENDIX A

C
C
C OBJECTIVE: DETERMINATION OF FIXED THRUST ANGLE TO MAINTAIN
C ORBITAL DEVIATION WITHIN A PREDETERMINED

C BANDWIDTH.

C
C
C VARIABLE DEFINITIONS:

C
C X(1) = RADIUS (METERS)

C X(2) = RADIAL VELOCITY (METERS PER SECOND)
C X(3) = THETA (RADIANS)
C X(4) = ANGULAR VELOCITY (RADS PER SECOND)

C XDOT(1) = TIME DERIVATIVE OF X(1)
C XDOT(2) = TIME DERIVATIVE OF X(2)
C XDOT(3) = TIME DERIVATIVE OF X(3)
C XDOT(4) = TIME DERIVATIVE OF X(4)
C RO = REFERENCE ORBIT
C D = DRAG tN)

C EQ = SPECIFIC ENERGY OF REFERENCE ORBIT

C E = SPECIFIC ENERGY

C MU = GRAVITATIONAL CONSTANT
C M = SPACECRAFT MASS (KG)
C GAMMAR = FLIGHT PATH ANGLE (RADIANS)
C GAMMAD = FLIGHT PATH ANGLE (DEGREES)

C TH = THRUST (N)

C TMAX = BLOWDOWN (MAXIMUM) THRUST
C ALPHAR = THRUST ANGLE (RADIANS)
C CD = COEFFICIENT OF DRAG
C RHOO = REFERENCE ATMOSPHERIC DENSITY
C RHO = CALCULATED ATMOSPHERIC DENSITY

C SPI = SPECIFIC IMPULSE

C V = VELOCITY

C SREF = REFERENCE SURFACE AREA
C GO = GRAVITATIONAL ACCELERATION

C H = INCREMENT OF TIME (STEP SIZE)
C PTI = PRINT TIME INTERVAL (STEP SIZE)

C T = BEGIN TIME

C TF = FINAL (END) TIME

C a = SEMI-MAJOR AXIS
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C e = ECCENTRICITY

C

C

C START PROGRAM

PROGRAM ACTORB

C

C

C VARIABLE DECLARATION

IMPLICIT REAL*8 (A-H,L-Z)

DIMENSION X(4),XDOT(4)

C

C

C DEFINITION OF CONSTANTS

PI=3. 14159265359D+O

GO=9. 806D+O
T1=OD+O

N=4

C

CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC

C MAIN PROGRAM

C

OPEN(1O,FILE='INIT' ,STATUS='OLD')

OPEN(11,FILE=' OUT' ,STATUS='NEW')

OPEN (12, FILE=' ORBEL' ,STATUS=' NEW')

OPEN(13,FILE=' RAT' ,STATUS='NEW')

C

READ(10,1)R3,VO,M,TMAX,T,TF,H,PTI,CD,MU,RHOO,SREF,SPI

I FORMAT(13(/,21X,D13.7))

C

C

PRINT*, 'ENTER ALPHA'

RED,DEG

ALPHAR=DEG*PI/180 .OD+O

C

C

INDEX=O

KOUNT=1

X(1)=RO

X (2) =OD+O

X (3) =OD+O
X (4) =1. 167344 9D-3
EO=M*(C(Va *VO) /2-MU/RO)

C

C
WRITE(11,*),' TIME ORBITS RADIUS VELOCITY ALPHA

*AGMENERGY TMAX'

WRITE(11,*),' (sec) (kmn) (kin/sec) (deg)

WRITE(12,*),' T a e APOGEE PERIGEE
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*PERIOD

WRITE(13,*),I TIME ORBITS DRAG TH
*MASS GAMMA'

C

C

C CALCULATIONS

C

C

100 CALL DRAG(SREF,CD,X,RO,RHOO,D,T,V)

CALL ONOFF(RO,X,TMAX,SPI,GO,TH,EO,GAMMAR,ALPHAR,V,D)

CALL DIFFEQ(X,XDOT,MU,D,M,TMAX,ALPHAR,T,TH)

CALL RK4 (T,X,XDOT,N,H, INDEX,T)

C

C

IF (INDEX .NE. 0) GO TO 100

C

C

C UNIT CONVERSIONS

C

R=X(1) /1000

SPEED=(C(X(2)*X(2))+(X(1)*X(4))**2)**0.5)I1000
V=SPEED*1000

M=M- ((TH*H) /(SPI*GO))
MASS=20000-M

GAMMAR=ATAN(X(2) /(X(1) *X(4) )
GAMMAD=GAMMAR*180 .OD+0/PI
ANG'.- (l) *V*COS{GAMMAR))

AL}'HA='.LPHAR*180.OD+0/PI

ENERGY=( (V*V) /2)-(MU/X(l))

ORBITS=T/5382 .458

C

C
CALL ORBDAT(ENERGY,ANGM,PI,a,e,APOGEE,PERIGE,PERIOD)

C
C

C OUTPUT

C

IF (KOUNT .LT. DNINT(PTI/H)) GO To 200

C

WRITE (11,2) T,ORBITS,R, SPEED,ALPHA,ANGM,ENERGY,TH

WRITE (12,3) T, a, e,APOGEE, PERIGE, PERIOD
WRITE (13, 4)T,ORBITS,D,TH,MASS,GAMMAD

C
2 FORMAT(2X,F7.0, 1X,F5.2,3x,F8.3,2X,F6.4, 1X,F6.1,2X,

*F14.2,2X,F12 .2,2X,F5.0)
3 FORMAT(2X,F7.0, 1X,F1O.3,2X,F4.3, 1X,F1O.3, 1X,F1O.3,2X,F10.2)

4 FORMAT (2X,F7 .0, 2X,F5 .2, 2X, F12.9, 1X,F5. 0, 1X,F15 .3, lX,FlO .4)

C
C
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KOUNT= 0
200 KOUNT=KOUNT+l

IF (TF .GE. T) GO TO 100

C

C

END

C

C

CCccccccccCCCCccCCCCCCCCCCCCccCccccccCCcCCCCCCcccCccCCCCCCCCCcc

C

SUBROUTINE DRAG(SREF,CD,X,RO,RHOO,D,T,V)

IMPLICIT REAL*8 CA-H, L-Z)

DIMENSION X(4),XDOT(4)

C

C

V=(C(X(2) *X~(2)) +(X(1) *X (4)) **2) **0.5

BETA=2.12D-05

RHO=RHOO*EXP (-BETA*CX (1) -RO))

D=0 .5D0*RHO*CD*SREF*V*V

C

C

RETURN

END

C

C

CCCCCccccccCCCCCCcCcCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCccccCCCCcC

C

SUBROUTINE DIFFEQ(X,XDOT,MU,D,M,TMAX,ALPHAR,T,TH)

IMPLICIT REAL*8 (A-H, L-Z)

DIMENSION X(4),XDOT(4)

C
C

A=X(1) *X(4) *X(4)
B=MU / (X (1) * X(1) )
CC(DIM) *(X(2) /CC(X(2) *X(2) )+(X(1) *X(4) )**2) **Q 5))
E= (TH/M) *SIN (ALPHAR)

C

C
P=2 *X (4) *X (2) /X (1)
Q=(D/ (X(1) *M)) * ( (X(()*X(4) )/IC (X(2) *XC2) )+(X(1) *X(4) )**2) **0.5))
5= (TN! CXCl) *M) )*COS (ALPHAR)

C
C

XDOT C1)=X (2)

XDOT (2) =A-B-C+E
XDOT (3) =X (4)
XDOT (4) =-P-Q+S

C
C
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99 RETURN

END

C

C

CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC

C

SUBROUTINE RK4 (T,x, XDOT, N, H,INDEX)

IMPLICIT REAL*8 (A-H,L-Z)

INTEGER INDEX,I

DIMENSION X(4),XDOT(4),SAVED(4),SAVEX(4)

C

C

INDEX=INDEX+1

GO TO (1,2,3,4),INDEX

1 DO 10 I=1,N

SAVEX (I) =X (I)
SAVED (I) =XDOT (I)

10 X(I)=SAVEX(I)+.5D0*H*XDOT(I)

T=T+.5D0*H

RE TURN

C

C
2 DO 20 I=1,N

SAVED (I) =SAVED (I) +2. DO *)MOT (I)

20 X(I)=SAVEX(I)+.5D0*H*XDOT(I)

RETURN

C

C

3 DO 30 I=1,N
SAVED (I) =SAVJED (1) +2. DO *)MOT (I)

30 X(I)=SAVEX(I)+H*XDOT(I)

T=T+.5D0*H

RETURN

C

C

4 DO 40 I=1,N

40 X(I)=SAVEX(I)+H/6.DO*(SAVED(I)+XDOT(I))
INDEX=0

RETURN

END

C

C

CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC

C

SUBROUTINE OREDAT (ENERGY, ANGM, PI,a, e,APOGEE, PERIGE, PERIOD)

IMPLICIT REAL*8 (A-H, L-Z)

C

C

e=(1+(2*ENERGY*ANGM*ANGM/ (3.98601208133D+14*
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*3.98601208133D+14) ))**0.5

a=(-3.986D+14/ (2*ENERGY) )/1000

APOGEE=a* (1+e)

PERIGE=a* (l-e)

PERIOD=((2*PI)/(3.986D+05)**O.5)*(a**1.5)

C

C

RETURN

END

C

C
CCCCCCCCCCCCCCCCCCCCCccccccccCCCCccCCCCcCCCCCCCCccCcCCcCCCCCcCCc
C

SUBROUTINE ONOFF(RO,X,TMAX,SPI,G,TH,E,GA4MAR,ALPHAR,D)

IMPLICIT REAL*8 (A-H, L-Z)

DIMENSION X(4),XDOT(4)

C

C
DELTAR=RO-1000

MU=3. 986012D+14

M=20000

E=M* ((V*V) /2- (MU/X(l))

C

C PRINT*, 'M4TJ',MTJ

C PRINT*,'E0-' ,EO

C
IF (TH .EQ. TMAX) GO TO 99

C

IF (X(l) .LE. DELTAR) THEN

C

IF (E .LT. EG) THEN

TH=TMAX

ELSE

TH=OD+0

ENDIF

ELSE

TH=OD+0

ENDIF

C

C
99 IF (E .GE. EO) THEN

TH=OD+0

END IF

C

C
100 RETURN

END
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C
C
CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC
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